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ABSTRACT 

If V = L, and x is an uncountable regular non weakly compact cardinal, then 
there exists a simple complete Boolean algebra of cardinality x. 

1. Introduction 

A complete Boolean algebra B is s i m p l e  if it is atomless and if it has no proper 

atomless complete subalgebra. In this paper we concern ourselves with the 

question whether simple complete Boolean algebras exist, and if they do, in 

what sizes. 

The problem of existence of simple complete Boolean algebras appears for 

the first time in 1971 in an article by McAloon 18]. Previously, in 1966, McAloon 

constructed a rigid complete Boolean algebra, that is, an algebra whose only 

automorphism is the identity (el. !7]). It can be readily seen that a simple 

complete Boolean algebra is rigid. 

(If n is a nontrivial automorphism of B, find x e B such that n x ' x  = 0, 

let C be the subalgebra generated by D u W, where D denotes the set of all d ~ B 

such that d �9 (x + rtx) = 0 and W is the set of  all elements of the form z + nz, 

with z =< x. Then C is a proper atomless complete subalgebra of B.) 

As a matter of  fact, it is proved in I-8] that an atomless complete Boolean 

algebra is simple if and only if it is rigid and minimal. Consequently, McAloon 

observes that the algebra constructed by Jensen in 1968 in L is simple (cf. [5]). 

(The algebra used by Jensen to obtain a model with a nonconstructible 

A~ real of minimal L-degree.) 
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I remark in [4] that the construction I gave in 1967 [2] yields a simple 

complete Boolean algebra (in a model). In the present paper we carry out the 

construction of a simple complete Boolean algebra in detail; rather than forcing 

we use Jensen's principle o. Thus we obtain another example of a simple complete 

Boolean algebra in L. The construction is a refinement of the construction of 

a Suslin tree. By Jensen [6], the construction of a ~-Suslin tree in L works for 

all regular non weakly compact cardinals; similarly, one can generalize the 

construction of simple complete Boolean algebras. 

Finally, it turns out that the restriction to regular non weakly compact cardi- 

nals is necessary; that makes Theorem 3 in L best possible. 

We will prove the following theorems. 

THEOREM l. I f  X is a weakly compact cardinal then there is no simple 

complete Boolean algebra of cardinality x.  

THEOREM 2. Assume the generalized continuum hypothesis. I f  x is a singular 

cardinal then there is no simple complete Boolean algebra of cardinality ~. 

THEOREM 3. Assume the axiom of constructibility. I f  r is an uncountable 

regular cardinal and rc is not weakly compact, then there exists a simple com- 

plete Boolean algebra of cardinality ~. 

Therefore, in the universe L of constructible sets. we have simple complete 

Boolean algebras of arbitrarily large sizes. This does not say anything about the 

existence of simple complete Boolean algebras in the universe of all sets. It may 

as well be the case that there are models where simple complete Boolean algebras 

do not exist; however, we do not wish to conjecture either way. 

It seems to us that one should first look into the problem of existence of 

simple complete Boolean algebras which satisfy the countable chain condition. 

(Note that one possible tool in this case is Martin's axiom which as yet has no 

generalization to larger cardinals.) One may find the following observation helpful. 

PROPOSITION. I f  B is a simple complete Boolean algebra satisfying the 

countable chain condition then either there exists a Suslin tree or B is countably 

generated. 

In Theorem 2, we assume the generalized continuum hypothesis (in fact, the 

assumption is weaker). It would be interesting to have a model with a simple 

complete Boolean algebra of singular cardinality, for example, 2 ~~ N,~L. 

As mentioned earlier, being simple coincides with being rigid and minimal. 
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Since complete Boolean algebras were predestined to serve as a tool in construc- 

tion of generic models, it is only natural to look at the properties of the generic 

sets obtained when using simple complete Boolean algebras. Using well-known 

facts from the theory of Boolean-valued models, we obtain, for example, 

COROLLARY (to the proof of Theorem 3). It is consistent that there exists a 

set X c_ o91 such that 

(i) X is nonconstructible; 

(ii) X ~ ~t is constructible for each a < 091 ; 

(iii) X is of minimal L-degree, that is, for every Y eL[X],  either Y EL 

or X ~ L [ Y ] ;  

(iv) X is ordinal definable in L[X]. 

2. Preliminaries 

We use the standard set theoretical notation and terminology. Ordinal numbers 

are denoted by letters a, fl, 3',"" and as customary, an ordinal number coincides 

with the set of all smaller ordinals. Infinite cardinals are identified with initial 

ordinals and are denoted by x, 2 , . . . .  The symbol ] X [ denotes the cardinality of 

the set X .  Each set has a rank, an ordinal number, and we use V~ to denote the 

collection of rank less than a. 

A cardinal x is regular if  it is not the sum of less than x of smaller cardinals; 

otherwise ~c is singular. If  x is a given uncountable regular cardinal, a set C ~ x 

is closed unbounded if it is closed in the order topology of ordinals and unbounded 

in x. A set S ~ x is stationary if it intersects every closed unbounded subset of x.  

Weakly compact cardinals are defined in various ways. The most suitable 

definition for our purpose is the definition involving 17 1 indescribability. A sentence 

a of the second order logic is Fl~ if  it is of the form VXtk(X) where X is a second 

order variable and ~b has no second order quantifiers. A cardinal x is weakly 

compact if and only if for every relation R on V~ and every 1-11 sentence tr, 

if  (V~, ~ ,R) ~ a then 3 a < x(V~, ~ ,R ~ V~) ~ a. 

The concept of weak compactness is stronger than inaccessibility. 

The reader is assumed to be familiar with the notion of complete Boolean 

algebra. We use + a n d -  to denote the Boolean algebra operations, and 

and II for the infinitary operations. Every Boolean algebra has the greatest 
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element 1 and the least element 0, and is partially ordered by < .  It  should be 

noted that the operations are definable in terms of  < and vice versa. 

A nonempty subset C of  a complete Boolean algebra B is a (complete) sub- 

algebra if  it is closed under the infinitary operations and u n d e r - .  C is generated 

by A ~ C, if  C is the least subalgebra containing A. A set D ___ B is dense in B if  

for every 0 ~ b e B there is 0 ~ d e D such that d -< b. Two elements b, c e B 

are incompatible (or disjoint) i f  b �9 c = 0. A set A ___ B is a parti t ion of B if  the 

elements of A are pairwise incompatible and if E {a : a e A} = 1. A is a parti- 

tion of  u E B if instead ~ {a : a e A) = u.  A partition Az is finer than a parti- 

tion A1 if  every element of  A1 is partitioned by a subset of  A2. 

A complete Boolean algebra B satisfies the countable chain condition i f  every 

partition of  B is at most countable. More generally, B satisfies the x-chain condi- 

tion i f  every partit ion of  B is of  cardinality less than to. 

An element a e B is an atom i f  a ~ 0 and there is no x such that 0 < x < a .  

B is atomless if  it has no atoms. 

I f u  ~ 0 and A ~  B we say that A slices u i f  there is a e A  such that a �9 u ~ 0 

and - a �9 u ~ 0. A slices a set S ___ B if A slices every nonzero u e S.  

LEMMA 1. Let B be a complete Boolean algebra and C a subalgebra of B. 

Then C is atomless if  and only if C slices B. 

PROOF. It is obvious that if C slices C that C is atomless. On the other hand, 

let u ~ 0 be an element of B that is not sliced by C. We let v = 1"I {c ~ C : c _~ u} 

and claim that v is an atom of  C. If  x e C is such that 0 < x < o then either 

x > u o r x ' u = 0 .  I f x > = u t h e n x = v s i n c e v i s t h e l e a s t x ~ C t h a t x > -  u; 

i f x ' u = 0 t h e n v - x = v a n d h e n c e x = 0 .  

3. Proof of Theorem 1 

Let s: be a weakly compact cardinal and let B be an atomless complete Boolean 

algebra of cardinality x .  We use the 1"I]- indescribability of x to show that B has 

an atomless complete subalgebra of  smaller cardinality. 

We may assume that B = x and thus let (x, + , .  , -  ) be an atomless complete 

Boolean algebra. The algebra satisfies the x-chain condition (from a partition of  

cardinality x one can obtain 2~distinct elements). Hence if X _  r is pairwise 

incompatible then X e V,.  

Let R be the set of all pairs (a, u) such that a _ x, a e V~, and u = ~ (b : be  a}. 

The above discussion shows that the following II~ sentence tr holds in the model 
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(V~, ~ , + , "  , - ,  R)  (the lower-case letter denotes first order variables, the ca- 

pital letters the second order). 

( r ,  + ,  , - )  is an atomless Boolean algebra / 
and Va (if a___ r then 3 u such that (a, u)~ R) / first order 

and VX (if X ~ r is pairwise incompatible then 3 x (x = X  )). 

By H~-indescribability there exists ~ < r such that tr holds in 

( + , . ,  - , R )  t V,). 

Therefore, C = (a, + ,  ' ,  - ) is an atomless algebra and ] C] < r .  To show 

that C is a complete subalgebra of B, we show that ~ {b : b ~ X} ~ C for each 

Xc_C. 
We show this by induction on IX [. Let X = {be : ~ < 7) and let C be closed 

under ~E of less than 7 elements. Define c e = b e - E ~<r for each ~ < 7. 

By induction hypothesis, each c eeC, and ~ ( c e : ~ < 7 )  = E ( b e : ~ < 7 } ;  

moreover, the c~ are incompatible. Let Y = {c e : ~ < 7}. Since tr holds in V~, 

we have Y ~ V~; using tr again, we obtain u ~ C such that (Y,u) ~R, therefore 

u = E{c  e : ~ < 7 } .  Hence ~ X ~ C .  

REMARK. The proof also gives us the following. If r is weakly compact then 

there is no complete Boolean algebra of cardinality r with less than r generators. 

Compare this with the construction of Stavi [9] ofa  countably generated complete 

Boolean algebra of cardinality r for every inaccessible non-Mahlo cardinal r .  

4. Proof of Theorem 2 

Assume the generalized continuum hypothesis. Let r be a singular cardinal 

and let B be an atomless complete Boolean algebra of cardinality r .  We will 

construct an atomless complete subalgebra C of smaller cardinality. 

The algebra B satisfies the x-chain condition. However, by a theorem of 

Erd6s and Tarski [1], if 2 is the least cardinal such that B satisfies the 2-chain 

condition, then 2 is regular; therefore, 2 < r .  

First we construct a subset A ___ B of cardinality at most 2 such that A slices B. 

By induction on ~ < 2, we construct partitions A, such that if a <  fl then 

Ap < E A, and A B is finer than A~. Then we let A = I..J ~.:xA~. By the 2-chain 

condition, ]A~ [ <  2 for each a, and so I AI =< 2. 

Let Ao = {1). Having constructed A~, we pick for each u ~ A~ two incompatible 
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nonzero elements v and w such that v + w = u.  The collection A~+ 1 of all such 

elements is a finer partition than A~, and ~ A,+I = ?E A~. 

If  ~ is a limit ordinal, we let A~ be the collection of all nonzero products 

II {up: fl < ~}, where u B ~ Ap for each fl < ~. A~ is a finer partition than each 

Aa and ~ A~ < ~2 Ap for each fl < ~. 

We claim that A slices B. Otherwise, let u # 0 be an element not sliced by A. 

For each ~ < 4, there exists a unique u~ ~ A~ such that u~ > u. It is clear from 

the construction of A that the sequence {u~: ~ < 4} is strictly decreasing. How- 

ever, that contradicts the A-chain condition. (Note that this procedure also 

gives the proof of the Proposition in Section 1.) 

Now we let C be the complete subalgebra of B generated by A. Since A slices 

B, C is atomless, and so it suffices to show that ] C l < x.  Here we use the gen- 

eralized continuum hypothesis (in fact, all we need now is 2 x = 2). By induc- 

tion on ~ < 4, we define subsets C~ of B as follows: 

Co = A 

C~ = [..J B<~CB if ~ is a limit ordinal 

C~+x = all possible E of less than 4 elements of C~ and their complements. 

We have I C~ ] < 4 for each ~ < 4, and using the 4-chain condition, it follows 

that C = [.J ~<xC~; therefore [ C] = 4 < x. 

5. Proof  of  Theorem 3 

The construction is based on the construction of a Suslin tree. Let T be a 

x-Suslin t ree; i f  we reverse the partial order of T and embed it as a dense set 

in a complete Boolean algebra, then the algebra satisfies the x-chain condition 

(and assuming the generalized continuum hypothesis, its cardinality is x). 

Jensen has shown in 1-6] that in L, a x-Suslin tree exists for every regular 

uncountable non weakly compact cardinal. We will use Jensen's technique to 

construct a x-Suslin tree with the additional property that the resulting complete 

Boolean algebra is simple. 

First we recall some terminology concerning trees (for more details, see, for 

example, [-3]). A tree is a partially ordered set (T, < ) such that for every x ~ T, 

the set of all predecessors {y ~ T: y < x) is well ordered; the order type of this 

set is the order of x.  The ~th level U~ of the tree consists of all x e T of order ~. 
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T~ is the tree on U p,:~ua. A branch of a tree is a linearly ordered subset 

containing all predecessors of all its elements; an antichain is a set of pairwise 

incomparable elements. 

Let x be a regular uncountable cardinal. A normal x-tree is a tree with ex- 

actly x levels such that: 

(i) every point has successors on all higher levers and at least two immediate 

successors; 

(ii) every branch of limit length has at most one immediate successor; 

(iii) every level has cardinality less than x. 

A normal M-tree is a x-Suslin tree if, moreover, every antichain has cardinality 

less than x.  

Let ( T , < r )  be a tc-Suslin tree. Let <B be the inverse of the ordering 

< r :  x <BY iff x >TY" The partially ordered set (T, <n) can be embedded into 

a unique (up to isomorphism), complete Boolean algebra (B, < R) such that T 

is dense in B. Incomparable elements of T are incompatible as elements of B, 

and since T is a x-Suslin tree, B satisfies the M-chain condition. 

Let �9 < x. For each u ~ U~ (the ~th level), let [u] = Y~ {x: x e u}. Since T 

is dense in B, we have [U~] = 1; also, [u] _-<B[v] iff u _ v .  Let 

B'~ = {[u]: u ___ U,}; B~ is a complete subalgebra of B and is isomorphic to 

the set algebra N(U~). Let B, = [.J a<~Bp. B~ is described by T, and is a (not 

necessarily complete) subalgebra of  B. If  a is an arbitrary element of B, then, 

since T is dense and satisfies the x-chain condition, there exists a set X c T, 

I XI < x, such that a = E X .  Then we can find e < x and u c U~ such that 

a = ~ u; therefore a e B ' .  Consequently, we have 

B =  UB~.  

Now, let C be a complete subalgebra of B. First a trivial but useful remark. 

LEMMA 2. Assume that for  each x e T there exists y > r X such that y e C. 

Then C = B.  

PROOF. If  a e B  then a = ~ { x e T : x < B a } .  By the assumption, 

a = E { y e T : y  < B a  and y ~ C } .  Therefore a ~ C .  

Let C'~ = C f]  B~ and C~ = C f] B~. Since B = I,J ~<~B~, we have C = U ~<~C~. 
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Each C'~ is a complete subalgebra of  B~', hence {u _~ U~: l-u] ~ C} is a complete 

subalgebra of  the set algebra ~ (U , ) .  The collection of  minimal u _ U~ such 

that [u] ~ C is a partition of  U~ and determines C' .  Therefore, C~ corresponds 

to a parti t ion E~ of T, such that each e e E~ is a subset of  some U a , and E~ deter- 

mines C~. 

We say that E,  slices T~ if for each x e T~ there are y, z ~ T~ of the same order, 

both y > rx and z > r x ,  and y and z belong to different members of E~. Note 

that this exactly means that C~ slices B~. 

LEMMA 3. I f  C is an atomless, complete subalgebra of B then the set of 

all ~ < tc such that E~ slices T~ is closed unbounded. 

PROOF. It is easy to verify that it is closed. To show that it is unbounded, 

let 7 < x; we find ~ > ~, such that E~ slices T~. For  each x ~ Uy there is c E C 

such that c slices x; therefore there is ~o > 7 such that C~o slices B~'. Similarly, 

there is ~t > ~o such that C~1 slices B',o, and so forth. If  we let ~ = lira ~n, then 

C~ slices B~. 

Now we say that a partition E of  T~ is good i f  every e ~ E is a subset of  some 

U a and if E slices T~. 

We will use combinatorial properties of  the constructible universe L to construct 

a x-Suslin tree T such that B is a simple complete Boolean algebra, for each 

regular uncountable nonweakly compact to. 

We present the construction in detail for x = ~ol. In the general case, one has 

to assume additional combinatorial properties, as in Jensen's proof  16]. We 

leave it to the reader to verify that the subsequent construction that makes B 

simple, works also in the general case. 

In case x = co I , the only assumption we need is the Jensen principle o : 

There is a sequence (S~:~ < ~ 1 ) s u c h  that for each S _q co 1 the set 

{~ < cot :S n ~ = S~} is stationary. 

Jensen's construction of  a Suslin tree using Jensen's principle can be found 

in I6]. We will construct a Suslin tree T on ordinals less than co t in such a way 

that the algebra B is simple. 

By induction on ~, we construct U~. I f  ~ is a successor, ~ = /~  + 1, then we 

adjoin to each x ~ U~ at least two immediate successors. 

I f  ~ is a limit ordinal and S~ is a maximal antichain in T, then we construct 

U~ so as to nip this antichain in the bud. This will suffice to make T a  Suslin tree. 

However, we want B to be simple. This is handled as follows. Let ~ be a limit 
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ordinal such that S~ is a pair (x, E) where x ~ T~ and E is a good partition of T~. 

(We can certainly invent some coding device to give a precise meaning to the 

word is.)We construct U, as follows.For each z ~ T~ there is a branch bz through z of  

length , .  We appoint immediate successors to some of the bz; as known, the 

construction keeps going if  for each y ~ T~ we appoint a successor to at least 

one bz going through y .  For every fl < , ,  let x a be the flth element of the branch 

b~, (that is, bx = {xp: fl < ,}) .  We appoint successors only to bx and to those 

b, such that if  z ~ Up then z is not in the same member of the partition E as xp. 

Since E slices T~, it follows that for each y ~  T~ there exists z >TY such that 

z r Up is not in the same member of the partition E as xp. Hence each y ~ T~ 

will have a successor at level U~. 

Let T be the tree constructed as above. In addition to being Suslin, we show 

that B is a simple, complete Boolean algebra. Let C be an atomless, complete 

subalgebra of B and let x E T; we will find y > T x such that y ~ C. By Lemma 2 

we have C = B .  

By the introductory remarks, C corresponds to a partition of T, and by Lem- 

ma 3, for a closed, unbounded set of , ,  the partition is a good partition of T~. 

Using o, we find a limit o r d i n a l ,  such that S~ = (x, E~) where E~ is the parti- 

tion corresponding to C~ and is good. 

While constructing U~, we made sure that bx is appointed a successor, and 

only certain bz's are. Let y E U~ be the successor of bx. For each fl < , ,  let up ~ E 

be such that xp ~ up. We recall that [up] ~ C for each fl < , .  Thus we will be 

done if we show that y = 1I {[up]: fl < ~} and therefore y ~ C .  

Clearly, y < B [up] for each fl < ~. To show that y > B the product, we assume 

otherwise and then there exists t ~ T incomparable with y and t < B [up] for each 

fl < u. This is possible only if there is a branch of length ~ other than bx which 

goes through each up and is appointed a successor. However, we constructed 

U~ such that there is no such branch. 

6. Proof of the Corollary 

We sketch the proof of the Corollary. Let B be the simple complete Boolean 

algebra of cardinality N1 that we constructed in L. Let G be an L-generic ultra- 

filter on B. Since B is atomless, G is not constructible. It is known that, when 

using a Suslin tree in forcing, then no new countable sets are added; hence every 

countable subset of G is constructible. 

To show that G has a minimal L-degree, let X ~ LEG ] be nonconstructible. Let 
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X be a Boolean-valued name for X and let C be the complete subalgebra of  B 

generated by the values occurring in _X. Let u = {a ~C:  a is an a tom of  C}, 

v = - u.  Since X ~ L we have v s G and G [.J C ~ L[X] .  Let D be the complete 

subalgebra generated by {c~C: c < v} u { b ~ B :  b < u}. D is an atomless 

complete subalgebra of  B and is a proper subalgebra unless G ~ L[X] .  

To see that G is ordinal-defnable in L[G], we refer to an unpublished theorem 

of  Vop~nka saying that if  B is a rigid complete Boolean algebra and G1, G2 

generic ultrafilters on B such that M[G1] = M[G2] then G1 = G 2. Therefore 

in our case, G is definable in L[G] from B e L, hence ordinal definable. 
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